
Research
Best of Breed API
Middleware for
Mainframes

What tools are needed to API-enable
the Mainframe?

Author: Steve Craggs
April 2018
Version 1.00

Sponsored by

Table of Contents
Executive Summary .. 1
Introduction .. 2
The API Architecture ... 3

What is an API? ... 3
Implementing an API Architecture 4
Why API-enable the Mainframe? 5
API Middleware for mainframe users 6

Mainframe Considerations .. 8
Technology-related factors 8
Learning the lessons from past mainframe
integration projects .. 9

Mainframe API Middleware 11
Basic functions .. 11
Best-of-Breed Characteristics 12

Development / Deployment 12
Operations ... 16
Flexibility .. 17

Summary .. 18

Executive Summary

“The strategic thinking has
evolved; many companies
that were developing
strategies to move off the
mainframe now realize it is
much more effective to
keep the mainframe and its
core applications at the
heart of the business while
building new capabilities
around it.”

In today’s IT marketplace it is easy to think that mainframes are being marginalized more and more in
companies across the world. Indeed, not so long ago the story was that the mainframe was the dinosaur,
headed towards global extinction. This forecast has, of course, been
thoroughly disproved, as many companies continue to gain great
business benefit from their mainframe investments. The strategic thinking
has evolved; many companies that were developing strategies to move
off the mainframe now realize it is much more effective to keep the
mainframe and its core applications at the heart of the business while
building new capabilities around it. As technology has continued its
breakneck speed of change, the world of the ‘connected mainframe’ is
very much here. Companies can continue to benefit from the mainframe’s
unsurpassed levels of availability, scalability and performance while
gaining all the advantages of leveraging new channels, markets and
opportunities.

The most recent demonstration of this shift is the emergence of the so-called API model, which enables the
aggregation of a diverse set of IT assets in order to deliver business services that support operations more
effectively, with minimal effort and without the need for specialized skills. Essentially, system of record business
activities are made available externally through the use of APIs that can then be embedded into phone apps,
web pages, chips and any other desired delivery channel.

Companies with large mainframe investments will immediately appreciate the benefits of the API model. It has
similarities to the service-oriented architecture (SOA) movement, but with the major difference that APIs require
far less skill to use and lend themselves to rapid development. At a stroke, years of mainframe investment
becomes accessible in a relatively simple way to all areas of the business, and indeed, a host of new
applications also become accessible to the mainframe, allowing it to take full advantage of technological
developments such as social markets, phone apps, tablets and the Internet of Things (IoT). These different
technology investment areas can feed off each other, creating maximum value and improving the return on
assets.

However, no change is without risk. Executives of mainframe-oriented companies are often uneasy about
allowing the mainframe world to merge with the rest of the IT structure. For example, concerns abound about
preserving service levels and maintaining security and integrity, and there is also a general feeling that extensive
retraining is going to be needed. The reality is that generic tools developed without considering special
mainframe needs will not do the job effectively. Success or failure with a mainframe API model will be governed,
to a large extent, by the effectiveness of the tools to support this highly specialized environment, and so
companies should look for toolsets that are specifically oriented to mainframe API enablement, deployment and
operations.

This paper considers the topic of mainframe API enablement, and identifies the best-of-breed characteristics to
look for in evaluating any mainframe API middleware toolset, in order to help companies make the decision that
will best suit their individual needs.

 Page 1

Introduction
Despite years of predictions of their demise, many companies still have millions of dollars invested in their IBM
mainframe solutions, encompassing application code, skills, scripts and general working practices and
procedures. Even with the wide range of modern technology, mainframes still offer an ideal platform for
business critical computing, offering scalability, reliability and predictability with the operational efficiency of a
‘single system’ perspective.

Rather than taking the high-risk approach of replacing these mainframes and thereby throwing away these huge
investments, most mainframe users are instead looking for ways to increase the return on these assets by
placing them squarely at the centre of the modern computing world. This strategy offers the possibility of
leveraging the existing mainframe portfolio while at the same time exploiting the advantages of different
technologies and delivery channels, maximizing opportunities for business productivity, efficiency and overall
success.

“Then there is the skills
problem; trying to find
developers who are
equally expert in
mainframe programming
and later technologies”

One of the main challenges, however, is two bring the different technology worlds together while at the same
time maintaining enough separation to avoid contamination issues. For example, opening up access to selected
mainframe applications from social marketplaces may deliver a huge increase in market reach and broadening

of product offerings, but if it comes at the expense of compromising the
legendary integrity and reliability of the mainframe environment then the price is
unlikely to be worth paying. Then there is the skills problem; trying to find
developers who are equally expert in mainframe programming and later
technologies such as JSON, OAuth and NodeJS is going to be extremely
difficult and expensive. Surely there must be a way to keep the mainframe and
web-based worlds separate but connected in such a way that these risks are
minimized?

Service oriented approaches emerged as one way to try to address this integration issue. The concept was to
enable business application code, processes and data to be assembled into ‘services’ that can be called
externally to execute a standalone business function, such as ‘Place Order’. When the ‘Place Order’ service is
called, the tooling ‘orchestrates’ the flow between the various components to replicate the order process to
provide the desired result. However early architectures such as SOA were very standards-based and formal
about the way these services are driven, and as a result building the front end calls to these services is quite
skills-dependent. At the same time, companies were realizing that new platforms like phones, tablets and the
Internet of Things could offer new delivery channels for new solution types. The digital marketplace has started
to emerge, and one key characteristic is the speed with which it moves. New application innovations need to be
seized on quickly in order to compete. A faster, simpler way was needed to enable developers to build solutions
that consume these services.

Enter the API model. The API model is based around modern linkage techniques like REST where the call to
drive some back end service is as simple as what programmers would generally think of as an API (Application
Programming Interface) call; hence the name. The API model has in turn spawned the API Economy, a digital
strategy covering an ecosystem of suppliers and developers where developers can rapidly pick up APIs, for
example from a social exchange or marketplace, and quickly bring new solutions to market. It worth noting in
passing that although the API model may look completely different from other service-oriented approaches, the
same concept remains of having a back-end service that can be driven externally; it is just the method of
achieving this that is different.

The API model offers an ideal opportunity for mainframe users to bring their existing assets into play as part of
broader, multi-channel solutions, but the absolute key will be to API-enable the mainframe with the right tools in
place, to provide the protection layer to prevent any contamination while at the same time offering the speed of

 Page 2

delivery expected in modern business operations. This paper will focus on some of the key aspects of these
critical tools and the respective best of breed characteristics.

The API Architecture
Although more and more companies are becoming familiar with the API model, there are plenty of opportunities
for confusion. This is particularly the case for some mainframe users who are used to thinking about ‘API’ in a
different sense. Therefore, a quick recap is in order.

What is an API?
The key of the API model unsurprisingly, is the concept of an API. Much confusion stems from the fact that a
term familiar to many programmers is being used to cover a similar but distinct concept. In the mainframe
world, a CICS or IMS programmer tends to think of ‘API’ as the Application Programming Interface to be used
to call a particular function provided by the CICS or IMS platform, the database, the operating system or
whatever. In other words, it is one or more lines of code, supplying parameters as laid out in a specified ‘API’,
driving the desired function in the underlying system software. A mainframe programmer is likely to view an API
call as a piece of distinct, technical functionality that is only a tiny part of a larger business application.

The API in API Economy terms is in principle not dissimilar in that it is a way for one component to call some
sort of activity provided by another, frequently in the sense of a front-end component driving a backend ‘system
of record’ or ‘legacy’ one. The driver of the service is referred to as the API ‘consumer’, and the provider of the
service as the API ‘provider’.

The first clue to a difference in usage is right there; rather than executing a technical command such as reading
from a database, this usage of ‘API’ refers to the driving of a discrete piece of business functionality, or
‘service’. The big issue for mainframe users is that this ‘service’ may well not exist in isolation but be part of a
larger application. A major part of the work to API-enable the mainframe is actually to define these services and
orchestrate the relevant application parts to deliver it on request. Think for example of a ‘place an order’ service.
In mainframe application terms, placing an order may just be one particular menu in the order entry interface; in
order to be usable externally, work will be needed to carve out this function and give it a programmable
interface.

Once the mainframe functionality has been suitably packaged into a service, the next challenge is to make this
programmable interface accessible in whatever fashion the service ‘consumer’ wants. Perhaps this will mean
enabling it to be called in a RESTful fashion, or through a SOAP message, or through some other mechanism.
This is where things get really tricky for mainframe users, because this usage must be enabled without
compromising the ‘mainframe values’ to which the company has become accustomed, such as security,
integrity, reliability and scalability.

Once the mechanism has been provided to call the service, the calls need to be built in to whatever the delivery
channel needs for the use in question. This might be as a widget on a web page, a phone App or perhaps an
automatically triggered link from a chip in a car or some other intelligent device in the Internet of Things. This
part is usually best carried out by developers specializing in the relevant environment, for example phone App
developers, because the skills requirements are likely to be completely different to mainframe ones. The
diagram below provides a simple illustration of a mainframe API to hook mainframe price quotes into a phone-
based price comparison App.

 Page 3

System of Record (CICS, IMS, DB2 etc)

Customer
details

Quote
results

‘Get customer quote’ API call

API Middleware
•Translate API call into actions
•Orchestrate actions
•Return quote

Price comparison App

RESTful
communications

Figure 1: An illustration of an API call

It is worth noting that in the API Economy, ‘API’ can sometimes be assumed to encompass both the consumer
and provider parts, although API providers normally regard the term as referring to the services that they choose
to make publicly available for external consumption. Perhaps more accurately, the back-end work and the
connectivity mechanism to drive it tend to be referred to as ‘API-enabling’ the business systems. This paper will
not spend much time on the front end challenge of building the calls into the Apps or widgets or whatever, but
instead will concentrate on the issues of API-enabling the mainframe, to make selected pieces of business
functionality publicly available for building into new solution types that can be delivered over a wide range of
channels.

Implementing an API Architecture
API architecture is really a natural evolution of early service oriented architectures that came to prominence in
the last ten or fifteen years. It retains the basic concept of some sort of ‘back-end’ business service that can be
driven externally, but the API approach carries the independence of the service consumer further. Previous
approaches depended on relatively technical and complex programming to invoke a back-end or legacy
service, making it something that was normally done in-house, within the same company boundaries as the
business services themselves. By contrast, in the API world, while the building blocks for the services are still
provided by the business service owner, the consumers of those services are often components built by third
party developers, possibly with specific device expertise for example, with the invocation often being as simple
as a call to a URL. Since they are easier to use, developers can go to online marketplace to view available
business services and build them in to the solutions they are providing. The API approach has much less
restrictive skills requirements and offers greater opportunities for flexibility and innovation.

However, even the simpler and more flexible API approach has specific challenges that must be addressed. For
example, once the service request has been passed to the service provider, the service provider still needs to
handle all the necessary activities such as managing security, controlling traffic volumes, orchestrating the
legacy components to deliver the requested service and delivering the results. These are just the practical
challenges of course; there are also the usual challenges around what functionality a company is prepared to
expose externally and to whom, and how to keep any external activities from interfering with internal systems of
record.

 Page 4

An API architecture is therefore an essential requirement for successful, enterprise-class API enablement, and
this is particularly important for mainframe users who rely on their enterprise-class reliability, scalability, security
and performance. It is worth spending a few moments considering what types of functionality and supporting
activities will be required to deliver a successful API deployment. These include:

 Support for a wide range of delivery channels (e.g. phone Apps, IoT chips)
 An environment to attract and enable API-based solution developers
 An API middleware layer to make desired and authorized business functionality available to API

consumers safely and reliably
 Strategy and planning activities to make the optimal set of APIs available
 Governance activities to manage partner involvement and to ensure business cases are met

The diagram below illustrates the make-up of a generalized API architecture; the specifics of a mainframe API
architecture are discussed later.

API Architecture

Phones IoT devicesTablets Widgets Portals

Source:- Lustratus

Delivery channels

API Fulfilment

API Middleware

SecurityComposition / Orchestration
System Management DevOps tools

Access to Systems of Record components

Systems of Record

Applications
(eg CICS/IMS/Batch)

DataProcesses

API Strategy
and Planning

API
identification

Risk
management

Business
planning

Skills
management

API
Governance

Partner
management

Usage
statistics

Compliance
management

API
marketing

Brand
management

API users / developers

Developer tools

Self-service portal
Sandbox

Registration

Partner/key management Authentication
Usage management Device support

API lifecycle management

API Management
Analytics

Figure 2: The API Architecture

Having clarified what sort of architecture is required to succeed in the API Economy, the next area to tackle
within the overall theme of this paper is the applicability of the API Economy to a mainframe environment.

Why API-enable the Mainframe?
The reality is that API-enabling mainframes is becoming a key topic for most major companies – indeed, IBM
itself now places the API model firmly in the mainframe world as an important and relevant development.

There are a number of reasons for the appeal of the API model to mainframe-oriented companies. The benefits
that attract mainframe companies can be summarized as:

 Improved return on assets
 Wider and deeper market reach
 Faster time-to-market / increased agility
 Opportunities for new revenue streams
 Mitigation of disintermediation

 Page 5

The first point has already been touched upon. Over the years, companies have invested heavily in their
mainframe environments, and financial executives in particular are keen to ensure that these investments bring
the maximum possible returns. But mainframe assets in general are fairly difficult to access from the outside.
There are connectivity issues, syntactic and semantic issues at the invocation level, and a huge skills chasm
between mainframe and other IT staff. An API approach offers a way to overcome these issues. It addresses
the connectivity and invocation problems, and cunningly bridges the skills chasm by enabling each skills group
to concentrate on developing services. This is a key point – instead of telling a mainframe COBOL programmer
that he has to work with OAuth and JSON, or a phone App developer that she must work with COBOL, each
person is enabled to develop in his or her own environment.

One of the main reasons for creating APIs is to make them available to
solution developers working in modern delivery environments. By
enabling these developers to rapidly build new solutions that bring
business to the company through APIs, innovation is greatly
accelerated. Whether the work is done by third party developers or in-
house departments, new solutions can be quickly brought on line,
delivering new channels and ways for customers to buy. New revenue
streams may be created by offering an innovative new solution to
customers and consumers and companies can respond much more
quickly to both new opportunities and threats.

“One of the main reasons for
creating APIs is to make them
available to solution developers
working in modern delivery
environments. By enabling these
developers to rapidly build new
solutions that bring business to
the company through APIs,
innovation is greatly
accelerated”

It is even possible that an API approach can mitigate the threat of disintermediation. By providing APIs to drive
business activities as close as possible to the buyer, it reduces the risk of some other party getting into the gap
and cutting the provider out.

All these potential benefits support the crucial importance of the API model for mainframe users.

API Middleware for mainframe users
Having recognized the potential value of the API approach for mainframe users, before moving on to general
mainframe considerations, it is worth highlighting the key section in the centre of the API Architecture diagram
above; the API Middleware layer. In essence, the API Middleware layer plays a similar role as middleware plays
in other IT solutions. It sits between the client level and the systems of record, translating the desires of the
client into execution within the core systems of record.

Typical roles of the API Middleware layer are:

 Provide a connectivity bridge between the requestors and the back end systems of record
 Handle any format and mapping requirements between differing formats and protocols at either end
 Orchestrate the necessary back-end components to deliver the requested business service
 Securely authenticate and protect usage of the systems of record layer
 Satisfy systems management, security, analytic and audit requirements for proper governance

In some API architecture implementations, the API Middleware layer is fairly minimal. This is the case for
example where the ‘back-end’ systems of record are already packaged as programmable services, perhaps
accessed through RESTful interfaces. Indeed, for these simpler environments a generic layer of API Middleware
is sufficient to meet most needs, and for this reason it is common for API Management tools such as Apigee
API Management, IBM API Connect, Red Hat 3Scale and CA API Management to include a generic subset of
API Middleware in their offerings. This generic layer typically supports simple web service and SOAP calls and
sometimes provides some limited level of orchestration support.

However, for mainframe users the API Middleware layer is absolutely key. Many applications, services and
processes will not be available through a simple call interface. A mainframe-specific layer will be needed to

 Page 6

handle all the complicated mainframe-specific resources like 3270 applications, CICS and IMS transactions,
mainframe databases and corporate systems of record processes. This mainframe specific layer of API
Middleware, will be critical for delivering a successful API-enabled environment while mitigating the inherent risk.
The diagram below indicates how the mainframe-specific API tools such as GT Software Ivory and IBM z/OS
Connect relate to the generic API Management tools mentioned above in terms of the basic architecture.

Generic API Middleware

API users / developers

Web service callsSOA SOAP calls
Basic composition and orchestration

Developer tools

Self-service portal
Sandbox

Registration

Partner/key management Authentication
Usage management Device support

API lifecycle management Analytics

API Management

DataProcesses Applications
(eg CICS/IMS/Batch)

Mainframe systems of Record

Mainframe-specific API
Middleware

Composition / Orchestration

Platform security

Access to Systems of Record components

System Management

DevOps tools

Generic API
Management

Tools

Mainframe
Specific

API Tools

M
ainfram

e
External System

s

Figure 3: API Middleware packaging into generic and mainframe-specific layers

It is worth mentioning the Enterprise Service Bus (ESB) category of products here too. While ESBs are mostly
about the join between the mainframe and external systems, some of the suppliers such as IBM, Oracle, TIBCO
and Mulesoft also offer a limited set of generic and mainframe specific API Middleware.

 Page 7

Mainframe Considerations
Before looking at the mainframe-specific API Middleware layer in more detail, there are a number of other
special mainframe-related considerations that must be taken into account. On the one hand, there are a
number of technology-related factors that are either unique or particularly relevant to mainframes, and on the
other there is a considerable body of experience built up in mainframe integration projects of the past. The idea
of integrating the mainframe more widely is not new; it has gone through numerous iterations including
messaging middleware, ESBs and SOA before arriving at APIs. The lessons learned can drastically shortcut the
effort to API-enable the mainframe while increasing the likelihood of a successful project.

Technology-related factors
There are four main categories of technology-related factors that users should consider when embarking on
API-enabling the mainframe:

 Applications and resources
 Environment
 Unique mainframe attributes
 Mainframe skills

Most mainframe systems of record embody applications, environments and resources that are alien to those
not steeped in mainframe tradition. The IBM transaction processing products, CICS and IMS, provide a
complete environment in which to run high volumes of transactions, reliably and effectively. CICS is ubiquitous,
used by almost all mainframe establishments, while IMS is more specialized but heavily used in the finance
industry in particular. Non-IBM products such as CA-IDMS, CA-Datacom, CA-IDEAL, Natural and Adabas are
also quite common. In programming terms, COBOL is by far the most popular language, although PL/1 has its
fans. The DB2 database system and the WebSphere MQ messaging middleware may be a little less inscrutable
to outsiders due to their existence on non-mainframe platforms, but other system facilities such as RACF and
SAF are largely unknown outside of the mainframe. So any toolset designed to API-enable the mainframe must
be able to address the needs of these specialized resources and environments.

To some extent when API-enabling the mainframe, technology can shield the non-mainframe world from these
mainframe-specific products and environments, but the greater challenge comes in meeting expectations in
terms of unique mainframe attributes. Companies that rely on mainframes for much of their business have come
to expect a range of benefits from their mainframe implementations. These benefits accrue in areas like
reliability, robustness, scalability, performance, security, integrity and manageability. The problem is that when
services are delivered within the API model, client-side components in particular will be running in a wide range
of environments and technologies, each with its own associated characteristics. The risk is that for mainframe
users used to a high level of service quality based on innate mainframe capabilities, this quality of service could
be jeopardized by influence from non-mainframe technologies like phones, tablets and chips sitting inside
household appliances or cars. For example, while a mainframe user will typically run their workstations or other
devices in at least a semi-secure environment, a phone user may well leave the phone unattended for a while,
quite possibly in a public place. Any tools or technology involved in API-enabling the mainframe must take these
sorts of factors into account.

“Regarding skills, as discussed
above, it is likely to be difficult
and expensive to find IT
developers who are comfortable
programming in both mainframe
and mobile environments”

Regarding skills, as discussed above, it is likely to be difficult and
expensive to find IT developers who are comfortable programming in
both mainframe and mobile environments. Therefore, any toolset for
enabling the mainframe should make it easy for mainframe and non-
mainframe programmers to quickly create API components and
services without the need for expensive and time-consuming re-
education.

 Page 8

All of these mainframe environment-specific factors must be taken into account in evaluating best-of-breed
tools for mainframe API-enablement.

Learning the lessons from past mainframe integration projects
The API model has definitely become a major consideration for a growing number of companies across the
world. As discussed previously, the API approach has particular attractions for mainframe users. However, past
attempts at mainframe integration have typically run into a range of problems, and today there is a much greater
understanding of the mainframe-specific issues to take into account before embarking on a business services-
based mainframe integration strategy such as API enablement.

A number of the lessons learned reflect directly back to the technology-based considerations just discussed.
But one issue in particular stands out – that of mainframe business service composition. The idea of a
business service is the cornerstone of numerous mainframe integration initiatives and was mentioned in the
introduction to this paper, but as a reminder it refers to the need to provide discrete business functions that can
then be accessed externally, for example through APIs. If a phone App needs to be able to get an accurate
product price, for instance, then it has to have some mechanism to drive whatever applications and data
components make up the ‘get a price’ process on the mainframe.

“An App developer working on a
new phone-based digital
marketplace wants to be able to
drive a ‘product quote’ process;
the App developer now has to
work out which low-level services
are needed and in what process
flow to deliver the final price”

A common difficulty stems from a collision between the purist world of the systems architect, and the pragmatic
needs of operational service quality. Companies looking to open up the mainframe and leverage it across other
environments often see a pure, clean architecture where every business activity is packaged as a business
service and all these services exposed through APIs. This is a great ideal, but can be disastrous if implemented

without due consideration. The main issue is that, given the number of
mainframe transactions in existence, there is a danger this approach will
result in a huge number of low-level services being created, for example
‘get customer details’ or ‘check service history’. This may seem very
logical, but in reality the danger is this exports design issues to the API
developers. An App developer working on a new phone-based digital
marketplace wants to be able to drive a ‘product quote’ process; the
App developer now has to work out which low-level services are
needed and in what process flow to deliver the final price.

 Page 9

Get
List
Price

IMS System CICS System

Customer + product number Price

ORCHESTRATION (Exposed to API developer)
1. Call IMS to get product list price
2. Call CICS to get any applicable loyalty discount

1 2

API Consumers

‘Get customer quote’

Check
Loyalty

Discount

API Middleware

Figure 4: Excessive granularity requires procedural knowledge for the API developers

Contrast this approach with a more considered one, where a higher level ‘Find Customer Details’ API is
implemented. The consumption of the API has been de-skilled, removing any need for the API solution
developer to have any knowledge of internal processes and implementation details.

Get
List
Price

IMS System CICS System

Customer + product number Price

1 2

API Consumers

‘Get customer quote’

Check
Loyalty

Discount

API Middleware
ORCHESTRATION: (Hidden from API Developer)
1. Call IMS to get product list price
2. Call CICS to get any applicable loyalty discount

Figure 5: Getting the granularity right insulates the API developers

Note however that the ‘many small services’ approach can work if the right API middleware layer is present. If a
company chooses to implement a design where every discrete business operation has a corresponding service,
the API middleware can perform the necessary orchestration of all the lower level services offered by the

 Page 10

systems of record to present the API developer with a simple high-level API. It turns out that the API middleware
is the key to the whole issue, because provided the middleware enables services to be composed into APIs that
satisfy the API developer skills and needs, it doesn’t really matter whether the packaging of those services
(access, orchestration, data formatting etc) is carried out by the middleware alone or combined with other
business service initiatives within the mainframe platform such as BPEL or BPM.

In short, defining the optimal level of granularity:

 Decouples the API developers from the implementation details of the operation
 Ensures that mainframe APIs meet the business need more closely
 Keeps the number of APIs and related definitions under control
 Reduces the development effort required
 Optimizes performance and network load by limiting the trips to and from the mainframe

“The API middleware should
handle as much of the packaging
and managing of the various
systems of record components as
possible, to keep the APIs
presented as simple and easy to
use as possible”

In fact, mainframe integration user experiences generally show that a good guideline is to avoid imposing too
much of the API model on the mainframe environment. As commented
earlier, mainframes are different to other platforms; data is often in
proprietary formats, XML is almost never used, the skills set is highly
specialized and expectations of performance, scalability and reliability
are much higher. Therefore, the key to API enablement success in
mainframe environments is to implement only those APIs that are
required to achieve company goals. The API middleware should handle
as much of the packaging and managing of the various systems of
record components as possible, to keep the APIs presented as simple and easy to use as possible.

Mainframe API Middleware
Having set the framework for mainframe API enablement, it is now possible to focus on the key section of
interest, the mainframe-specific API Middleware component. As a reminder, many API Management vendors
include some basic generic API Middleware in their offerings, but the focus here is on the mainframe-specific
API Middleware layer.

Development tools for building external API-based solutions for consumer applications are generally
independent of whether back-end systems are mainframe-based or not, as discussed earlier. Instead, it is the
API middleware that is the critical differentiator for mainframe users. There is a basic set of functions required to
enable mainframe API enablement at the purely mechanical level, and then a range of best-of-breed
characteristics that can be used as a checklist to judge relevant differentiators in any API middleware selection.
In other words, every toolset for API enabling mainframes has to include the basic functionality, but the support
for the best-of-breed characteristics will depend on the particular vendor concerned.

Basic functions
At a minimum, API middleware for the mainframe must include the following basic functionality:

 Programmable access to mainframe applications
 Basic orchestration to execute API calls spanning multiple components
 Wrappers / Adapters to provide a standard invocation interface

Essentially, this list covers the ability to present APIs to API solution developers in a reasonably standard way.
Regarding programmable access, as mentioned in the previous section the mainframe has specific application
environments that control execution of online transactions. The most prevalent is IBM’s CICS, used by almost
all mainframe customers, and any basic mainframe API middleware toolset must at the very least address the

 Page 11

CICS transaction. Modern CICS applications are usually designed in such a way that they can be driven
externally through a programmable interface, using the COMMAREA in conjunction with the LINK function to
provide input to and execute the particular application. For applications that fall into this category, the API
middleware can fairly easily enable them to be driven from outside of CICS. Similarly, IMS TM applications can
be driven externally using the IMS resource adapter, enabling them for API usage too.

However, for older applications the access problem is more difficult. These applications were designed to be
run from a screen, and terminal handling is built into the application together with the business logic. Screen
handling is through the manipulation of 3270 data streams. Again in CICS terms, these programs are often
referred to as ‘BMS Applications’, that is, applications that use the CICS Basic Mapping Service facility to
process screen-based menus. In order to bring these applications into the API fold, it is necessary for the API
middleware to provide a mechanism to drive them through their built-in screen-based interfaces.

Given that mainframe functions of interest for deployment as APIs are likely to consist of multiple different
applications or parts of applications, a basic level of orchestration will also be required in the API middleware.
This may be based on some sort of standard, such as BPEL, but it must be able to handle the creation of a
process flow to execute the desired API function.

Finally, in order to be open to third party developers and a wide range of API consumer platforms, the API
middleware needs to provide a standard invocation structure regardless of where or on what technology
platform they are running. For example, this standard form of execution could be through a REST URL-based
interface or a WSDL-based web service. But it is up to the API middleware to provide the necessary wrappers
or adapters that can bridge from the desired standard interface specification to the required mainframe-oriented
access mechanisms such as COMMAREA-based LINKs.

Best-of-Breed Characteristics
With this basic level of functionality, it is possible to API enable at least CICS mainframe applications. However,
with just the basic level of API middleware functionality, the task is likely to prove cumbersome, error-prone, and
time and resource-intensive, and certainly does not naturally fit with a modern DevOps approach to application
development and deployment. In addition, many companies have important mainframe applications running in
other environments, such as IMS, IDMS or even batch.

To address the limitations of basic-level API enablement of the mainframe, the API middleware will usually
provide a range of other functions and capabilities. These will now be considered as potential best-of-breed
characteristics. It is important to recognize that the following characteristics may not all be required by every
company looking to API-enable their mainframe environment. Instead, the characteristics are provided as a
checklist of functionality that may or may not be required. This allows a company to choose the characteristics
relevant to its own requirements when assessing API middleware for the mainframe.

Best-of-breed characteristics will be considered in three main sections:

 Development / Deployment
 Operations
 Flexibility

Development / Deployment
As discussed earlier the issue of mainframe service composition is critical. Mainframe applications, services,
data and processes must be able to be packaged into APIs in such a way that they make optimal use of
mainframe systems of record without the imposition of unnecessary constraints and technical complexity for the
API consumer. Achieving the appropriate granularity ensures that knowledge of internal process and
implementation detail is decoupled from use of the API, but there are other factors that need to be taken into
account too. In a mainframe environment it is important to be sensitive to local policy on mainframe resource

 Page 12

usage. Each communication backwards and forwards between the mainframe and the API consumers will have
a significant cost, so the provided APIs need to take that into account as they optimize the granularity. Also,
some companies like to keep a very tight rein on the growth of their COBOL libraries, so it may be
unsatisfactory for any tool to generate or require new COBOL programs.

Another key point for a best-of-breed tool is to support the two distinct forms of designing and composing APIs
with the API middleware layer: bottom-up and top-down. These two design approaches reflect the different
points of access to APIs, from the mainframe or distributed worlds. Typically, the bottom-up approach involves
the mainframe team looking at the mainframe assets to be exposed, considering the interfaces used such as
CICS COMMAREA, and then mapping this up through the API middleware layer to the corresponding APIs. The
top-down approach tends to be used when driven from outside of the mainframe. The solution developer
looking to leverage mainframe services defines the required systems of record activities and then passes this
across to the mainframe team so that the desired service can be composed with the API middleware to
package up the specific mainframe application steps. Different organizations will feel most comfortable with
different approaches, and therefore support is required in the API middleware for both these design methods.

Some mainframe organizations may have already moved down a web services-based approach to mainframe
access. Therefore, API middleware may well need to offer web services support to leverage this investment.
Admittedly, web services do provide an overhead, because they are very standards-based and formally
structured, and they are not necessarily a good fit in terms of skills requirements to fit within a modern, DevOps-
based rapid development environment. But it is that formality that is often valued as a way of ensuring quality of
service levels and mitigating risk. The best-of-breed API middleware, then, will provide a mechanism to help
mainframe developers to bridge between mainframe and perhaps less well known web services technologies.

Another best-of-breed characteristic will be to reduce coding / code generation, or preferably eliminate it
entirely. Although it is obvious that less coding will result in lower costs and faster time-to-value, it is also
particularly beneficial in the mainframe case because of the fact that any coding required might well involve such
non-mainframe concepts as REST and JSON, where programmer unfamiliarity may lead to a greater potential
for error. DevOps support will particularly benefit from minimal coding requirements, enabling rapid API
development and deployment. Related to this point, ideally mainframe API middleware should also automate
as much of the service creation task as possible on the mainframe so that it can be done quickly, intuitively and
without the need for extensive retraining. This will allow mainframe developers to quickly and efficiently create
and deploy new or modified services, making the best use of available development resources.

Language support will obviously be another key area of added value. Mainframe applications might be written
in COBOL, PL/1, Assembler or even in a higher-level language like Natural. The company API-enabling its
mainframe should ensure that any toolset under consideration supports the necessary languages used for its
mainframe applications. This support will almost certainly need to encompass tools to map mainframe
programming structures such as COBOL copybooks into standards-based formats, using technologies like
XML or JSON.

As mentioned earlier, mainframe API middleware must be able to support various different types of
applications such as CICS COMMAREA and screen-based ones, IMS-based ones and even batch routines. In
fact, for many years there has been an active and well-developed aftermarket of vendors supplying a whole
range of applications and platforms for the mainframe, and support for the appropriate ones will be an essential
requirement for any user embarking on a project to API-enable the mainframe. The middleware may also need
to access mainframe data as well as mainframe applications, which would require access to DB2, VSAM,
Adabas and other mainframe data sources, preferably under a single SQL-style interface.

Basic orchestration is a fundamental requirement for any API middleware, as already discussed. But this is an
area where enormous advantage can be gained by supporting value-added orchestration capabilities. Best-
of-breed API middleware needs to make the task of composing mainframe resources and processes as simple
and error-free as possible, covering application platforms like CICS and IMS, data sources such as DB2 and

 Page 13

VSAM and existing mainframe processes that may already be flowcharted with BPEL or some sort of Business
Process Management (BPM) solution. The more automation the API middleware can provide, the less demand
will be placed on the API developers and consumers, reducing risk.

All of the best-of-breed areas discussed so far lead to what is likely to be one of the most critical areas of
differentiation for mainframe API middleware – ease-of-use. It is quite possible for the API middleware to
satisfy the previous requirements but still leave a lot of work for the technical staff to perform. Tools need to be
intuitive, with minimal training requirements, and allow both mainframe and distributed programmers to
concentrate on composing services of the right level of granularity for use in both environments without the
need for expensive third-party services. It is well worth verifying these facts with any prospective supplier before
any acquisition is made.

There are a host of functions that belong to the generic API model discussion rather than the mainframe API
middleware itself. Examples are partner management services to manage third party API developer partners,
sandbox services for rapid development and specific device support. However, although the API middleware
does not necessarily need to provide these functions directly, it must offer API ecosystem support. Security
and management are key aspects of an API model, especially given the fact that APIs may be being used by
third party developers. Most API solutions offer some sort of key system to authorize particular API
development partners for what they can and cannot access, and it may be necessary for the API middleware to
enforce that level of authorization across the mainframe services being utilized. There will also be a need for
material to provide API developers with the necessary information about the APIs supported on the mainframe,
in terms of what they do and what inputs and outputs they expect.

An essential part of any development process is testing, and this is another important best-of-breed area for
mainframe API middleware toolsets. This relates partly to the skills optimization issue, but also to the nature of
APIs. Testing will be very much easier if different components or services can be tested in isolation, rather than
having to wait for all the relevant components to be completed and assembled before any testing can occur. A
test harness that enables a mainframe developer to test a particular composed operation or its individual parts,
creating inputs and outputs to simulate real operations, will be invaluable in terms of reducing time-to-market for
new projects and speeding up the overall development process.

Once the new services are developed and composed into APIs for external presentation, the mainframe API
middleware toolset will need to provide governance and lifecycle support. This should allow the creation of
new APIs to be controlled and managed appropriately, fitting into corporate governance procedures and then
passing through development/test/QA/ production-levels to ensure that development, deployment and
production operations can be managed safely. Versioning should also be supported, to allow for mainframe
services to be updated in flight. Otherwise, there is an increased risk that an unprepared or incorrectly leveled
change might enter production, with potentially damaging consequences. A critical issue for mainframe users,
where skills are at a premium, is to ensure that APIs can be modified, enhanced and reused as quickly and
easily as possible with minimum additional effort.

Finally, an important aspect of a best-of-breed toolset will be the mainframe expertise of the tool supplier.
Although this is not actually a functional requirement, this point reflects the discussion about mainframe values
and the need to be sensitive to the special requirements of working in a mainframe environment. In order for the
toolset to be usable, effective and efficient, it will be vital that it is created based on an extensive understanding
of mainframes. For example, mainframe environments typically have stringent requirements on integrity and
recoverability. There are also many operating system functions that will be useful, and in the end the ‘look and
feel’ of the toolset will be important in order to gain acceptance within the mainframe community.

 Page 14

Best of breed characteristic: Development /
Deployment

Additional comments

Mainframe-oriented service composition Developing orchestration flows
 Building the right level of API granularity
 Optimizing load and resource usage

Bottom-up and top-down service development Flexibility to choose the API development

approach

Support for web services / SOA For companies already invested in these
technologies

Minimal code generation Providing codeless ways to drive mainframe

components

Automation facilities High degree of automation

Language support COBOL, PL/I, Natural, …

Support for additional mainframe resources CICS, IMS, 3270, Batch…
 Other native packages and systems
 Adabas, DB2, …

Added-value orchestration Spanning all mainframe resource types

 Leveraging existing flowcharts and processes

Ease-of-use Intuitive and efficient
 Minimal training requirements

API Ecosystem support Security and management

 Usage information
 API invocation details (inputs, outputs etc)

Testing tools Modelling / testing for individual components

Governance and lifecycle support Creation, deployment, retirement

Mainframe experience Vendor-provided experience and skills

Figure 6: Best of breed characteristics – Development / deployment

 Page 15

Operations
Once the mainframe APIs have been created and tested, focus moves onto production operations. At this
stage, the wider API ecosystem becomes heavily involved with facilities, usually through some sort of API
Management tool. But it is important that best-of-breed mainframe API middleware still maintains a close
working relationship with the ecosystem. For example, the middleware needs to ensure that the ecosystem has
all the necessary information from the mainframe perspective to function effectively, and there will be
mainframe-specific areas where the ecosystem will almost certainly be somewhat blind. In particular, API
models where third party developers are involved often need to support API analytics of some sort,
accurately measuring and reporting API activity and usage. This is a key component in quality control, helping to
identify successful third part partners and allowing greater usage as confidence grows.

It is important that any mainframe API middleware considers the question of administration, since mainframe
and non-mainframe assets need to be managed seamlessly to gain the most advantage from the API model.
New APIs need to be implemented, new users need to be authorized for allowed usage, and APIs being
replaced may need to be closed out, to mention just a few administrative tasks that need to be addressed. In
addition, API execution may span different locations as well as environments, even spreading as far as into
partner and other third party-companies. Therefore, the administration capabilities must include remote
operations to encompass end-to-end transaction needs. While some of these issues fall within the
responsibilities of the ecosystem, the mainframe API middleware needs to support such activities.

Of course, security is another issue that will be absolutely key to many mainframe companies. Mainframe users
are accustomed to a high level of security, and mainframe operations are often mission-critical in nature. These
factors combine to create a high level of concern and potential risk when deploying a mainframe-based API,
particularly because prized mainframe assets are now made available to the great wide world of tablets, phones
and the Internet of Things (IoT). Therefore it is crucial that security is managed carefully, linking up with existing
mainframe security facilities in use such as RACF. Security in this sense may need to address all four main
areas of authentication, privacy (encryption), integrity and non-repudiation. Once again, this will be primarily the
responsibility of the full API ecosystem but the mainframe API middleware toolset must play its part. For
example, the tools themselves must be secured from unauthorized usage.

The complexities of operating an API model, exacerbated by the use of asynchronous and event-driven modes
of operation, create a challenge in understanding what is actually happening in the live, production environment.
APIs may be executing and driving activities asynchronously, crossing platform and location boundaries at will,
and it can become extremely confusing to the operations staff. The result is that it can be hard to maintain
service levels and general responsiveness. The answer is for the API technology to offer some level of
monitoring and problem determination capability, and the API middleware has to play a key part in this since
it knows which activities are being driven by which APIs. These facilities need to be able to glean information
from within the mainframe to be combined with non-mainframe information in order to understand what is
happening, and then provide the necessary investigation and action tools, such as service tracing and data flow
analysis, to identify and resolve any problems spotted by the monitoring component. Ideally, this functionality
should also provide some method for integrating with the enterprise management framework, for
example offering an SNMP agent to alert the framework of problems within the wider mainframe environment.

Page 16

Best of breed characteristic: Operations

Additional comments

API analytics support Gather usage statistics for individual APIs
 Generate reports
 Pass analytics information to API ecosystem

analytics tools

Administration support for the API ecosystem Handling mainframe and non-mainframe
environments

 Bring mainframe APIs online and offline
 User management liaison
 Remote operations capability

Security Interoperation with API ecosystem

 Authentication, integrity, privacy and non-
repudiation functions

 Protection of API middleware assets

Monitoring and problem determination Information sharing with ecosystem tools
 Tracking of APIs and their internal flows

Integration with existing management framework Systems management
 Alerts
 Resource management

Figure 7: Best of breed characteristics – Operations

Flexibility
The final set of best-of-breed characteristics relates loosely to the flexibility of the toolset to support the
mainframe APIs. For some companies, bi-directional support will be critical, allowing API components
controlled by the API middleware to drive other APIs that may reside on other systems. Efforts to gain more
value from mainframe investments by enabling them to support the API model frequently focus on exposing
mainframe resources for outside usage. This will certainly be the mindset of a company that is looking to
stabilize mainframe investment. However, many companies have accepted that the mainframe remains a key
element of strategic planning for the future. These companies are likely to be very interested in the additional
benefits to be obtained by being able to interlink APIs – that is, for mainframe applications to be able to run
external APIs as well as the other way around. This ensures that all IT investments are leveraged, not just
mainframe ones. This bi-directional capability may require some additional work in the toolset since a way must
be provided for a mainframe application to issue API requests.

Another aspect of flexibility relates to where the API middleware runtime processing is carried out. This decision
will usually be made based on specific service-level requirements or restrictions. Among other things, the
mainframe API middleware needs to deal with navigation issues for mainframe applications, such as which
CICS program should be called depending on the result of the previous one, and formatting issues like dealing
with 3270 data streams when accessing screen-based applications. Depending on issues such as performance
requirements, mainframe capacity and ease of programming, it might be desirable to run all of the API
middleware functionality in its own mainframe address space or within an existing mainframe environment such
as CICS or IMS. Alternatively, it might be desirable for some or all of these activities to take place within a
mainframe speciality engine, to reduce costs and improve performance and scalability, or even outside the
mainframe altogether, perhaps in a distributed server, appliance or the Cloud. Having said that though, it is
highly likely that orchestration should be restricted to the mainframe to avoid having to expose mainframe-
specific processes and procedures to non-mainframe professionals. Whatever combination works best for the

 Page 17

user, it is clear that a best-of-breed mainframe API middleware toolset will need to support this choice of
processing location.

As just touched on, support for different processing locations and the previously discussed monitoring support
are important factors in another area of consideration for best-of-breed mainframe API middleware toolsets -
that is, scalability and performance. As well as these areas, the toolset will probably need to provide some
level of statistics reporting capability to allow effective capacity planning and load management and to provide
proper governance of third-party API developers. In addition, when running in a mode where most of the API
processing is carried out on the mainframe, the mainframe API middleware toolset should exploit native
mainframe high-performance options such as speciality engines and cross-memory support to optimize
performance.

Best of breed characteristic: Flexibility

Additional comments

Bi-directional support Mainframe access to external APIs
 API access to mainframes
 API access across mainframes

Choice of processing location Inside CICS
 Outside CICS but on the mainframe
 Making use of speciality engines
 Off the mainframe, on distributed servers,

appliances or in the Cloud

Performance / Scalability Ability to choose processing location based
on performance/scalability needs

 Statistics on services usage for capacity
planning purposes

Exploit native mainframe high-performance options Leverage mainframe-specific optimization

technologies

Figure 8: Best of breed characteristics – Flexibility

Summary
For many companies, mainframes remain a key asset for the foreseeable future. As these companies strive to
deliver increased business value from their IT investments, opening up the mainframe becomes a major focus.
The API model and its related toolsets offer a way not only to extend the life of the mainframe, but also to
ensure that it continues to play a valued role in driving the business forwards. Breaking down the barriers
between the mainframe and the rest of the IT world ensures that investments can be made wherever they make
the most sense, where the entire IT installation and its users may benefit.

But success or failure with mainframes in the API world will be governed to a large extent by the effectiveness of
the tools to support mainframe API enablement combined with a disciplined focus on delivering the right
mainframe-based APIs for the right solutions. Generic API middleware tools developed without considering
special mainframe needs will not do the job effectively. Instead, companies need to look for toolsets that are
specifically oriented to the mainframe, taking account of architectural, development, deployment and
operational needs.

All mainframe companies will have their own specific requirements and hot buttons, and these will affect the
selection of the most appropriate tools. The best-of-breed characteristics presented in this paper are intended
to provide a checklist that companies can evaluate against their own requirements, and then against the

 Page 18

toolsets offered by the various suppliers. Some of these characteristics address purely functional needs, while
others have implications for wider critical aspects of mainframe API initiatives, such as skills requirements,
security and manageability. However, the goal remains to ensure that companies end up with the API
middleware best designed to ensure the success of their own mainframe API initiatives.

Page 19

Page 20

About Lustratus Research
Lustratus Research, founded in 2006, aims to deliver independent and unbiased analysis of global software
technology trends for senior IT and business unit management, shedding light on the latest developments
and best practices and interpreting them into business value and impact. Lustratus analysts include some of the
top thought leaders worldwide in infrastructure software.

Lustratus offers a unique structure of materials, consisting of three categories—Insights, Reports and Research.
Insights offer concise analysis and opinion, while Reports offer more comprehensive breadth and depth.
Research documents provide the results of practical investigations and experiences. Lustratus prides itself on
bringing the technical and business aspects of technology and best practices together, in order to clearly
address the business impacts. Each Lustratus document is graded based on its technical or business
orientation, as a guide to readers.

Terms and Conditions
© 2019—Lustratus Research

Customers who have purchased this report individually or as part of a general access agreement, can freely
copy and print this document for their internal use. Customers can also excerpt material from this document
provided that they label the document as Proprietary and Confidential and add the following notice in the
document: “Copyright © Lustratus Research. Used with the permission of the copyright holder”. Additional
reproduction of this publication in any form without prior written permission is forbidden. For information on
reproduction rights and allowed usage, email info@Lustratus.com.

While the information is based on best available resources, Lustratus Research disclaims all warranties as to the
accuracy, completeness or adequacy of such information. Lustratus Research shall have no liability for errors,
omissions or in adequacies in the information contained herein or for interpretations thereof. Opinions reflect
judgment at the time and are subject to change. All trademarks appearing in this report are trademarks of their
respective owners.

Steve Craggs trading as Lustratus Research
www.lustratus.com

Ref SC/LR/31675249V2.0

	Executive Summary
	Introduction
	The API Architecture
	What is an API?
	Implementing an API Architecture
	Why API-enable the Mainframe?
	API Middleware for mainframe users

	Mainframe Considerations
	Technology-related factors
	Learning the lessons from past mainframe integration projects

	Mainframe API Middleware
	Basic functions
	Best-of-Breed Characteristics
	Development / Deployment
	Operations
	Flexibility

	Summary
	About Lustratus Research
	Terms and Conditions

