
Research
Best of Breed API
Middleware for
Core Systems

What tools are needed to API-enable
your legacy systems?

Author: Steve Craggs
April 2018
Version 1.00

Sponsored by

Table of Contents
Executive Summary .. 1
Introduction .. 2
The API Architecture ... 3

What is an API? ... 3
Implementing an API Architecture4
Why API-enable Core Systems?5
API Middleware for Core Systems users 6

Legacy Systems Considerations 8
Technology-related factors 8
Learning the lessons from past
integration projects .. 9

API Middleware ... 11
Basic functions ..11
Best-of-Breed Characteristics 12

Development / Deployment12
Operations ..16
Flexibility ..17

Summary ..18

“The strategic thinking has
evolved; many companies
that were developing
strategies to move off core
systems now realize it is
much more effective to keep
them and their core
applications at the heart of
the business while building
new capabilities around it.”

Executive Summary
In today’s IT marketplace it is easy to think that core systems are being marginalized in companies
across the world. Indeed, not so long ago the story was that core systems were the dinosaur,
headed towards global extinction. This forecast has, of course, been thoroughly disproved, as
as many companies continue to gain great business benefit from their
legacy system investments. The strategic thinking has evolved; many
companies that were developing strategies to move off these systems
now realize it is much more effective to keep them and their core
applications at the heart of the business while building new capabilities
around them As technology has continued its breakneck speed of
change, the world of the ‘connected mainframe’ is very much here.
Companies can continue to benefit from these core systems'
unsurpassed levels of availability, scalability and performance while
gaining all the advantages of leveraging new channels, markets and
opportunities.

The most recent demonstration of this shift is the emergence of the so-called API model, which enables the
aggregation of a diverse set of IT assets in order to deliver business services that support operations more
effectively, with minimal effort and without the need for specialized skills. Essentially, system of record
business activities are made available externally through the use of APIs that can then be embedded into
phone apps, web pages, chips and any other desired delivery channel.

Companies with large legacy systems investments will immediately appreciate the benefits of the API model.
It has similarities to the service-oriented architecture (SOA) movement, but with the major difference that
APIs require far less skill to use and lend themselves to rapid development. At a stroke, years of core
systems investments become accessible in a relatively simple way to all areas of the business, and indeed,
a host of new applications also become accessible to your legacy system, allowing it to take full advantage
of technological developments such as social markets, phone apps, tablets and the Internet of Things (IoT).
These different technology investment areas can feed off each other, creating maximum value and
improving the return on assets.

However, no change is without risk. Executives of companies that rely on legacy systems are often uneasy
about allowing them to merge with the rest of the IT structure. For example, concerns abound about
preserving service levels and maintaining security and integrity, and there is also a general feeling that
extensive retraining is going to be needed. The reality is that generic tools developed without considering
special core systems needs will not do the job effectively. Success or failure with an API model will be
governed, to a large extent, by the effectiveness of the tools to support this highly specialized environment,
and so companies should look for toolsets that are specifically oriented to core technology API enablement,
deployment and operations.

This paper considers the topic of API enablement for core systems, and identifies the best-of-breed
characteristics to look for in evaluating any API middleware toolset, in order to help companies make the
decision that will best suit their individual needs.

Page 1

“Then there is the skills
problem; trying to find
developers who are equally
expert in core technology
programming and later
technologies”

Introduction
Despite years of predictions of their demise, many companies still have millions of dollars invested in their
IBM core technology solutions, encompassing application code, skills, scripts and general working practices
and procedures. Even with the wide range of modern technology, they still offer an ideal platform for
business critical computing, offering scalability, reliability and predictability with the operational efficiency of a
‘single system’ perspective.

Rather than taking the high-risk approach of replacing them and thereby throwing away these huge
investments, most legacy systems users are instead looking for ways to increase the return on these assets
by placing them squarely at the centre of the modern computing world. This strategy offers the possibility of
leveraging the existing portfolio, while at the same time exploiting the advantages of different technologies
and delivery channels, maximizing opportunities for business productivity, efficiency and overall success.

One of the main challenges, however, is to bring the different technology worlds together while at the same
time maintaining enough separation to avoid contamination issues. For example, opening up access to
selected legacy system applications from social marketplaces may deliver a huge increase in market reach
and broadening of product offerings, but if it comes at the expense of compromising the legendary integrity

and reliability of the core system environment, then the price is unlikely to be
worth paying. Then there is the skills problem; trying to find developers who
are equally expert in legacy systems programming and later technologies
such as JSON, OAuth and NodeJS is going to be extremely difficult and
expensive. Surely there must be a way to keep the core technology and
web-based worlds separate but connected in such a way that these risks
are minimized?

Service oriented approaches emerged as one way to try to address this integration issue. The concept was
to enable business application code, processes and data to be assembled into ‘services’ that can be called
externally to execute a standalone business function, such as ‘Place Order’. When the ‘Place Order’ service
is called, the tooling ‘orchestrates’ the flow between the various components to replicate the order process
to provide the desired result. However early architectures such as SOA were very standards-based and
formal about the way these services are driven, and as a result building the front end calls to these services
is quite skills-dependent. At the same time, companies were realizing that new platforms like phones, tablets
and the Internet of Things could offer new delivery channels for new solution types. The digital marketplace
has started to emerge, and one key characteristic is the speed with which it moves. New application
innovations need to be seized on quickly in order to compete. A faster, simpler way was needed to enable
developers to build solutions that consume these services.

Enter the API model. The API model is based around modern linkage techniques like REST where the call
to drive some back end service is as simple as what programmers would generally think of as an API
(Application Programming Interface) call; hence the name. The API model has in turn spawned the API
Economy, a digital strategy covering an ecosystem of suppliers and developers where developers can
rapidly pick up APIs, for example from a social exchange or marketplace, and quickly bring new solutions to
market. It worth noting in passing that although the API model may look completely different from other
service-oriented approaches, the same concept remains of having a back-end service that can be driven
externally; it is just the method of achieving this that is different.

The API model offers an ideal opportunity for core systems users to bring their existing assets into play as
part of broader, multi-channel solutions, but the absolute key will be to API-enable core systems with the
right tools in place, to provide the protection layer to prevent any contamination while at the same time
offering the speed of delivery expected in modern business operations. This paper will focus on some of the
key aspects of these critical tools and the respective best of breed characteristics.

Page 2

The API Architecture
Although more and more companies are becoming familiar with the API model, there are plenty of
opportunities for confusion. This is particularly the case for some core systems users who are used to
thinking about ‘API’ in a different sense. Therefore, a quick recap is in order.

What is an API?
The key of the API model unsurprisingly, is the concept of an API. Much confusion stems from the fact that a
term familiar to many programmers is being used to cover a similar but distinct concept. In core systems, a
CICS or IMS programmer tends to think of ‘API’ as the Application Programming Interface to be used to call
a particular function provided by the CICS or IMS platform, the database, the operating system or whatever.
In other words, it is one or more lines of code, supplying parameters as laid out in a specified ‘API’, driving
the desired function in the underlying system software. A legacy systems programmer is likely to view an
API call as a piece of distinct, technical functionality that is only a tiny part of a larger business application.

The API in API Economy terms is in principle not dissimilar in that it is a way for one component to call some
sort of activity provided by another, frequently in the sense of a front-end component driving a backend
‘system of record’ or ‘legacy’ one. The driver of the service is referred to as the API ‘consumer’, and the
provider of the service as the API ‘provider’.

The first clue to a difference in usage is right there; rather than executing a technical command such as
reading from a database, this usage of ‘API’ refers to the driving of a discrete piece of business functionality,
or ‘service’. The big issue for core systems users is that this ‘service’ may well not exist in isolation but be
part of a larger application. A major part of the work to API-enable core systems is actually to define these
services and orchestrate the relevant application parts to deliver it on request. Think for example of a ‘place
an order’ service. In legacy system application terms, placing an order may just be one particular menu in
the order entry interface; in order to be usable externally, work will be needed to carve out this function and
give it a programmable interface.

Once core systems functionality has been suitably packaged into a service, the next challenge is to make
this programmable interface accessible in whatever fashion the service ‘consumer’ wants. Perhaps this will
mean enabling it to be called in a RESTful fashion, or through a SOAP message, or through some other
mechanism. This is where things get really tricky for core systems users, because this usage must be
enabled without compromising the values to which the company has become accustomed, such as security,
integrity, reliability and scalability.

Once the mechanism has been provided to call the service, the calls need to be built in to whatever the
delivery channel needs for the use in question. This might be as a widget on a web page, a phone App or
perhaps an automatically triggered link from a chip in a car or some other intelligent device in the Internet of
Things. This part is usually best carried out by developers specializing in the relevant environment, for
example phone App developers, because the skills requirements are likely to be completely different to core
systems ones. The diagram below provides a simple illustration of a core systems API to hook price quotes
into a phone-based price comparison App.

Page 3

System of Record (CICS, IMS, DB2 etc)

Customer
details

Quote
results

‘Get customer quote’ API call

API Middleware
•Translate API call into actions
•Orchestrate actions
•Return quote

Price comparison App

RESTful
communications

Figure 1: An illustration of an API call

It is worth noting that in the API Economy, ‘API’ can sometimes be assumed to encompass both the
consumer and provider parts, although API providers normally regard the term as referring to the services
that they choose to make publicly available for external consumption. Perhaps more accurately, the back-
end work and the connectivity mechanism to drive it tend to be referred to as ‘API-enabling’ the business
systems. This paper will not spend much time on the front end challenge of building the calls into the Apps or
widgets or whatever, but instead will concentrate on the issues of API-enabling core systems, to make
selected pieces of business functionality publicly available for building into new solution types that can be
delivered over a wide range of channels.

Implementing an API Architecture
API architecture is really a natural evolution of early service oriented architectures that came to prominence
in the last ten or fifteen years. It retains the basic concept of some sort of ‘back-end’ business service that
can be driven externally, but the API approach carries the independence of the service consumer further.
Previous approaches depended on relatively technical and complex programming to invoke a back-end or
legacy service, making it something that was normally done in-house, within the same company boundaries
as the business services themselves. By contrast, in the API world, while the building blocks for the services
are still provided by the business service owner, the consumers of those services are often components built
by third party developers, possibly with specific device expertise for example, with the invocation often being
as simple as a call to a URL. Since they are easier to use, developers can go to online marketplace to view
available business services and build them in to the solutions they are providing. The API approach has
much less restrictive skills requirements and offers greater opportunities for flexibility and innovation.

However, even the simpler and more flexible API approach has specific challenges that must be addressed.
For example, once the service request has been passed to the service provider, the service provider still
needs to handle all the necessary activities such as managing security, controlling traffic volumes,
orchestrating the legacy components to deliver the requested service and delivering the results. These are
just the practical challenges of course; there are also the usual challenges around what functionality a
company is prepared to expose externally and to whom, and how to keep any external activities from
interfering with internal systems of record.

Page 4

An API architecture is therefore an essential requirement for successful, enterprise-class API
enablement, and this is particularly important for core systems users who rely on their enterprise-class
reliability, scalability, security and performance. It is worth spending a few moments considering what
types of functionality and supporting activities will be required to deliver a successful API deployment.
These include:

Support for a wide range of delivery channels (e.g. phone Apps, IoT chips)
An environment to attract and enable API-based solution developers
An API middleware layer to make desired and authorized business functionality available to
API consumers safely and reliably
Strategy and planning activities to make the optimal set of APIs available
Governance activities to manage partner involvement and to ensure business cases are met

The diagram below illustrates the make-up of a generalized API architecture; the specifics of core
systems API architecture are discussed later.

API Architecture

Phones IoT devicesTablets Widgets Portals

Source:- Lustratus

Delivery channels

API Fulfilment

API Middleware

SecurityComposition / Orchestration
System Management DevOps tools

Access to Systems of Record components

Systems of Record

Applications
(eg CICS/IMS/Batch)

DataProcesses

API Strategy
and Planning

API
identification

Risk
management

Business
planning

Skills
management

API
Governance

Partner
management

Usage
statistics

Compliance
management

API
marketing

Brand
management

API users / developers

Developer tools

Self-service portal
Sandbox

Registration

Partner/key management Authentication
Usage management Device support

API lifecycle management

API Management
Analytics

Figure 2: The API Architecture

Having clarified what sort of architecture is required to succeed in the API Economy, the next area to tackle
within the overall theme of this paper is the applicability of the API Economy to a legacy systems
environment.

Why API-enable Your Core Systems?
The reality is that API-enabling core systems is becoming a key topic for most major companies – indeed,
IBM itself now places the API model firmly in the legacy systems world as an important and relevant
development. There are a number of reasons for the appeal of the API model to companies who rely on
legacy systems. The benefits that attract these companies can be summarized as:

Improved return on assets
Wider and deeper market reach
Faster time-to-market / increased agility
Opportunities for new revenue streams
Mitigation of disintermediation

Page 5

The first point has already been touched upon. Over the years, companies have invested heavily in their
core systems, and financial executives in particular are keen to ensure that these investments bring the
maximum possible returns. But these assets in general are fairly difficult to access from the outside. There
are connectivity issues, syntactic and semantic issues at the invocation level, and a huge skills chasm
between core systems and other IT staff. An API approach offers a way to overcome these issues. It
addresses the connectivity and invocation problems, and cunningly bridges the skills chasm by enabling
each skills group to concentrate on developing services. This is a key point – instead of telling a COBOL
programmer that he has to work with OAuth and JSON, or a phone App developer that she must work with
COBOL, each person is enabled to develop in his or her own environment.

One of the main reasons for creating APIs is to make them
available to solution developers working in modern delivery
environments. By enabling these developers to rapidly build new
solutions that bring business to the company through APIs,
innovation is greatly accelerated. Whether the work is done by third
party developers or in-house departments, new solutions can be
quickly brought on line, delivering new channels and ways for
customers to buy. New revenue streams may be created by offering
an innovative new solution to customers and consumers and
companies can respond much more quickly to both new
opportunities and threats.

“One of the main reasons for
creating APIs is to make them
available to solution developers
working in modern delivery
environments. By enabling these
developers to rapidly build new
solutions that bring business to
the company through APIs,
innovation is greatly
accelerated”

It is even possible that an API approach can mitigate the threat of disintermediation. By providing APIs to
drive business activities as close as possible to the buyer, it reduces the risk of some other party getting
into the gap and cutting the provider out.

All these potential benefits support the crucial importance of the API model for core systems users.

API Middleware for core systems users
Having recognized the potential value of the API approach for core systems users, before moving on to
general considerations, it is worth highlighting the key section in the centre of the API Architecture diagram
above; the API Middleware layer. In essence, the API Middleware layer plays a similar role as middleware
plays in other IT solutions. It sits between the client level and the systems of record, translating the desires
of the client into execution within the core systems of record.

Typical roles of the API Middleware layer are:

Provide a connectivity bridge between the requestors and the back end systems of record
Handle any format and mapping requirements between differing formats and protocols at either end
Orchestrate the necessary back-end components to deliver the requested business service
Securely authenticate and protect usage of the systems of record layer
Satisfy systems management, security, analytic and audit requirements for proper governance

In some API architecture implementations, the API Middleware layer is fairly minimal. This is the case for
example where the ‘back-end’ systems of record are already packaged as programmable services, perhaps
accessed through RESTful interfaces. Indeed, for these simpler environments a generic layer of API
Middleware is sufficient to meet most needs, and for this reason it is common for API Management tools
such as Apigee API Management, IBM API Connect, Red Hat 3Scale and CA API Management to include a
generic subset of API Middleware in their offerings. This generic layer typically supports simple web service
and SOAP calls and sometimes provides some limited level of orchestration support.

However, for core systems users the API Middleware layer is absolutely key. Many applications, services
and processes will not be available through a simple call interface. A specific layer for core systems will be
needed to handle all the complicated resources like 3270 applications, CICS and IMS transactions,

Page 6

databases and corporate systems of record processes. This core systems specific layer of API Middleware,
will be critical for delivering a successful API-enabled environment while mitigating the inherent risk. The
diagram below indicates how the API tools for core systems, such as the Fabric from Adaptigent and IBM z/
OS Connect relate to the generic API Management tools mentioned above in terms of the basic architecture.

Generic API Middleware

API users / developers

Web service callsSOA SOAP calls
Basic composition and orchestration

Developer tools

Self-service portal
Sandbox

Registration

Partner/key management Authentication
Usage management Device support

API lifecycle management Analytics

API Management

DataProcesses Applications
(eg CICS/IMS/Batch)

Systems of Record

Core Systems API
Middleware

Composition / Orchestration

Platform security

Access to Systems of Record components

System Management

DevOps tools

Generic API
Management

Tools

Core Systems

Specific
API Tools for

C
ore System

s
External System

s

Figure 3: API Middleware packaging into generic and legacy system-specific layers

It is worth mentioning the Enterprise Service Bus (ESB) category of products here too. While ESBs are
mostly about the join between on prem and external systems, some of the suppliers such as IBM,
Oracle, TIBCO and Mulesoft also offer a limited set of generic and legacy specific API Middleware.

Page 7

Core Systems Considerations
Before looking at the API Middleware for core systems layer in more detail, there are a number of other
special considerations that must be taken into account. On the one hand, there are a number of technology-
related factors that are either unique or particularly relevant to core systems, and on the other there is a
considerable body of experience built up in integration projects of the past. The idea of integrating core
systems more widely is not new; it has gone through numerous iterations including messaging middleware,
ESBs and SOA before arriving at APIs. The lessons learned can drastically shortcut the effort to API-enable
core systems while increasing the likelihood of a successful project.

Technology-related factors
There are four main categories of technology-related factors that users should consider when embarking on
API-enabling their core systems:

Applications and resources
Environment
Unique core system attributes
Legacy systems skills

Most systems of record embody applications, environments and resources that are alien to those not
steeped in core systems tradition. The IBM transaction processing products, CICS and IMS, provide a
complete environment in which to run high volumes of transactions, reliably and effectively. CICS is
ubiquitous, used by almost all legacy systems establishments, while IMS is more specialized but heavily
used in the finance industry in particular. Non-IBM products such as CA-IDMS, CA-Datacom, CA-IDEAL,
Natural and Adabas are also quite common. In programming terms, COBOL is by far the most popular
language, although PL/1 has its fans. The DB2 database system and the WebSphere MQ messaging
middleware may be a little less inscrutable to outsiders due to their existence on other platforms, but other
system facilities such as RACF and SAF are largely unknown outside of core systems. So any toolset
designed to API-enable them must be able to address the needs of these specialized resources and
environments.

To some extent when API-enabling core systems, technology can shield the rest of the world from these
specific products and environments, but the greater challenge comes in meeting expectations in terms of
unique core systems attributes. Companies that rely on legacy systems for much of their business have
come to expect a range of benefits from their implementations. These benefits accrue in areas like reliability,
robustness, scalability, performance, security, integrity and manageability. The problem is that when services
are delivered within the API model, client-side components in particular will be running in a wide range of
environments and technologies, each with its own associated characteristics. The risk is that core systems
users are used to a high level of service quality based on innate system capabilities, and this quality of
service could be jeopardized by influence from other technologies like phones, tablets and chips sitting
inside household appliances or cars. For example, while a core systems user will typically run their
workstations or other devices in at least a semi-secure environment, a phone user may well leave the phone
unattended for a while, quite possibly in a public place. Any tools or technology involved in API-enabling
core systems must take these sorts of factors into account.

“Regarding skills, as discussed
above, it is likely to be difficult
and expensive to find IT
developers who are comfortable
programming in both legacy and
mobile environments”

Regarding skills, as discussed above, it is likely to be difficult and
expensive to find IT developers who are comfortable programming
in both legacy and mobile environments. Therefore, any toolset for
enabling core systems should make it easy for all programmers to
quickly create API components and services without the need for
expensive and time-consuming re-education.

Page 8

“An App developer working on a
new phone-based digital
marketplace wants to be able to
drive a ‘product quote’ process;
the App developer now has to
work out which low-level services
are needed and in what process
flow to deliver the final price”

All of these environment-specific factors must be taken into account in evaluating best-of-breed tools for
API-enablement of core systems.

Learning the lessons from past integration projects
The API model has definitely become a major consideration for a growing number of companies across the
world. As discussed previously, the API approach has particular attractions for legacy systems users.
However, past attempts at integration have typically run into a range of problems, and today there is a much
greater understanding of the specific issues to take into account before embarking on a business services-
based legacy system integration strategy such as API enablement.

A number of the lessons learned reflect directly back to the technology-based considerations just discussed.
But one issue in particular stands out – that of core system business service composition. The idea
of a business service is the cornerstone of numerous core system integration initiatives and was mentioned
in the introduction to this paper, but as a reminder it refers to the need to provide discrete business functions
that can then be accessed externally, for example through APIs. If a phone App needs to be able to get an
accurate product price, for instance, then it has to have some mechanism to drive whatever applications and
data components make up the ‘get a price’ process on legacy systems.

A common difficulty stems from a collision between the purist world of the systems architect, and the
pragmatic needs of operational service quality. Companies looking to open up their core systems and
leverage them across other environments often see a pure, clean architecture where every business activity
is packaged as a business service and all these services exposed through APIs. This is a great ideal, but
can be disastrous if implemented without due consideration. The main issue is that, given the number of

core systems transactions in existence, there is a danger this
approach will result in a huge number of low-level services being
created, for example ‘get customer details’ or ‘check service history’.
This may seem very logical, but in reality the danger is this exports
design issues to the API developers. An App developer working on a
new phone-based digital marketplace wants to be able to drive a
‘product quote’ process; the App developer now has to work out
which low-level services are needed and in what process flow to
deliver the final price.

Page 9

Get
List
Price

IMS System CICS System

Customer + product number Price

ORCHESTRATION (Exposed to API developer)
1. Call IMS to get product list price
2. Call CICS to get any applicable loyalty discount

1 2

API Consumers

‘Get customer quote’

Check
Loyalty

Discount

API Middleware

Figure 4: Excessive granularity requires procedural knowledge for the API developers

Contrast this approach with a more considered one, where a higher level ‘Find Customer Details’
API is implemented. The consumption of the API has been de-skilled, removing any need for the
API solution developer to have any knowledge of internal processes and implementation details.

Get
List
Price

IMS System CICS System

Customer + product number Price

1 2

API Consumers

‘Get customer quote’

Check
Loyalty

Discount

API Middleware
ORCHESTRATION: (Hidden from API Developer)
1. Call IMS to get product list price
2. Call CICS to get any applicable loyalty discount

Figure 5: Getting the granularity right insulates the API developers

Note however that the ‘many small services’ approach can work if the right API middleware layer is present.
If a company chooses to implement a design where every discrete business operation has a corresponding
service, the API middleware can perform the necessary orchestration of all the lower level services offered
by the systems of record to present the API developer with a simple high-level API. It turns out that the API

Page 10

middleware is the key to the whole issue, because provided the middleware enables services to be
composed into APIs that satisfy the API developer skills and needs, it doesn’t really matter whether the
packaging of those services (access, orchestration, data formatting etc) is carried out by the middleware
alone or combined with other business service initiatives within the legacy system platform such as BPEL or
BPM.

In short, defining the optimal level of granularity:

Decouples the API developers from the implementation details of the operation
Ensures that APIs meet the business need more closely
Keeps the number of APIs and related definitions under control
Reduces the development effort required
Optimizes performance and network load by limiting the trips to and from the system of record

“The API middleware should
handle as much of the packaging
and managing of the various
systems of record components as
possible, to keep the APIs
presented as simple and easy to
use as possible”

In fact, core system integration user experiences generally show that a good guideline is to avoid
imposing too much of the API model on the environment. Legacy
systems are different to other platforms; data is often in proprietary
formats, XML is almost never used, the skills set is highly specialized
and expectations of performance, scalability and reliability are much
higher. Therefore, the key to API enablement success in regards to
core systems is to implement only those APIs that are required to
achieve company goals. The API middleware should handle as
much of the packaging and managing of the various systems of
record components as possible, to keep the APIs presented as simple and easy to use as possible.

 API Middleware for Core Systems
Having set the framework for API enablement for core systems, it is now possible to focus on the key
section of interest, the core system API Middleware component. As a reminder, many API Management
vendors include some basic generic API Middleware in their offerings, but the focus here is on the core
system API Middleware layer.

Development tools for building external API-based solutions for consumer applications are generally
independent of whether back-end systems are legacy systems or not, as discussed earlier. Instead, it is the
API middleware that is the critical differentiator for these users. There is a basic set of functions required to
enable API enablement at the purely mechanical level, and then a range of best-of-breed characteristics
that can be used as a checklist to judge relevant differentiators in any API middleware selection. In other
words, every toolset for API enabling core systems has to include the basic functionality, but the support for
the best-of-breed characteristics will depend on the particular vendor concerned.

Basic functions
At a minimum, API middleware for core systems must include the following basic functionality:

Programmable access to applications on core systems
Basic orchestration to execute API calls spanning multiple components
Wrappers / Adapters to provide a standard invocation interface

Essentially, this list covers the ability to present APIs to API solution developers in a reasonably standard
way. Regarding programmable access, as mentioned in the previous section, legacy systems have specific
application environments that control execution of online transactions. The most prevalent is IBM’s CICS,
used by almost all customers, and any basic API middleware toolset must at the very least address the

Page 11

CICS transaction. Modern CICS applications are usually designed in such a way that they can be driven
externally through a programmable interface, using the COMMAREA in conjunction with the LINK function to
provide input to and execute the particular application. For applications that fall into this category, the API
middleware can fairly easily enable them to be driven from outside of CICS. Similarly, IMS TM applications
can be driven externally using the IMS resource adapter, enabling them for API usage too.

However, for older applications the access problem is more difficult. These applications were designed to be
run from a screen, and terminal handling is built into the application together with the business logic. Screen
handling is through the manipulation of 3270 data streams. Again in CICS terms, these programs are often
referred to as ‘BMS Applications’, that is, applications that use the CICS Basic Mapping Service facility to
process screen-based menus. In order to bring these applications into the API fold, it is necessary for the
API middleware to provide a mechanism to drive them through their built-in screen-based interfaces.

Given that the functions of interest for deployment as APIs are likely to consist of multiple different
applications or parts of applications, a basic level of orchestration will also be required in the API
middleware. This may be based on some sort of standard, such as BPEL, but it must be able to handle the
creation of a process flow to execute the desired API function.

Finally, in order to be open to third party developers and a wide range of API consumer platforms, the API
middleware needs to provide a standard invocation structure regardless of where or on what technology
platform they are running. For example, this standard form of execution could be through a REST URL-
based interface or a WSDL-based web service. But it is up to the API middleware to provide the necessary
wrappers or adapters that can bridge from the desired standard interface specification to the required
access mechanisms such as COMMAREA-based LINKs.

Best-of-Breed Characteristics
With this basic level of functionality, it is possible to API enable at least CICS core system applications.
However, with just the basic level of API middleware functionality, the task is likely to prove cumbersome,
error-prone, and time and resource-intensive, and certainly does not naturally fit with a modern DevOps
approach to application development and deployment. In addition, many companies have important core
system applications running in other environments, such as IMS, IDMS or even batch.

To address the limitations of basic-level API enablement of core systems, the API middleware will usually
provide a range of other functions and capabilities. These will now be considered as potential best-of-breed
characteristics. It is important to recognize that the following characteristics may not all be required by every
company looking to API-enable their core systems environment. Instead, the characteristics are provided as
a checklist of functionality that may or may not be required. This allows a company to choose the
characteristics relevant to its own requirements when assessing API middleware.

Best-of-breed characteristics will be considered in three main sections:

Development / Deployment
Operations
Flexibility

Development / Deployment
As discussed earlier the issue of core systems service composition is critical. Applications, services,
data and processes must be able to be packaged into APIs in such a way that they make optimal use of
systems of record without the imposition of unnecessary constraints and technical complexity for the API
consumer. Achieving the appropriate granularity ensures that knowledge of internal process and
implementation detail is decoupled from use of the API, but there are other factors that need to be taken into
account too. In a legacy system environment it is important to be sensitive to local policy on resource

Page 12

usage. Each communication backwards and forwards between core systems and the API consumers will
have a significant cost, so the provided APIs need to take that into account as they optimize the granularity.
Also, some companies like to keep a very tight rein on the growth of their COBOL libraries, so it may be
unsatisfactory for any tool to generate or require new COBOL programs.

Another key point for a best-of-breed tool is to support the two distinct forms of designing and composing
APIs with the API middleware layer: bottom-up and top-down. These two design approaches reflect the
different points of access to APIs, from legacy systems or distributed worlds. Typically, the bottom-up
approach involves the core systems team looking at the assets to be exposed, considering the interfaces
used such as CICS COMMAREA, and then mapping this up through the API middleware layer to the
corresponding APIs. The top-down approach tends to be used when driven from outside of the core
systems. The solution developer looking to leverage on prem services defines the required systems of
record activities and then passes this across to the team so that the desired service can be composed with
the API middleware to package up the specific application steps. Different organizations will feel most
comfortable with different approaches, and therefore support is required in the API middleware for both
these design methods.

Some organizations still reliant on core systems may have already moved down a web services-based
approach to their access. Therefore, API middleware may well need to offer web services support to
leverage this investment. Admittedly, web services do provide an overhead, because they are very
standards-based and formally structured, and they are not necessarily a good fit in terms of skills
requirements to fit within a modern, DevOps-based rapid development environment. But it is that formality
that is often valued as a way of ensuring quality of service levels and mitigating risk. The best-of-breed API
middleware, then, will provide a mechanism to help developers to bridge between their core systems and
perhaps less well known web services technologies.

Another best-of-breed characteristic will be to reduce coding / code generation, or preferably eliminate
it entirely. Although it is obvious that less coding will result in lower costs and faster time-to-value, it is also
particularly beneficial in the case of legacy systems, because of the fact that any coding required might well
involve such concepts such as REST and JSON, where programmer unfamiliarity may lead to a greater
potential for error. DevOps support will particularly benefit from minimal coding requirements, enabling rapid
API development and deployment. Related to this point, ideally API middleware should also automate as
much of the service creation task as possible on core systems so that it can be done quickly, intuitively and
without the need for extensive retraining. This will allow legacy developers to quickly and efficiently create
and deploy new or modified services, making the best use of available development resources.

Language support will obviously be another key area of added value. Core systems applications might
be written in COBOL, PL/1, Assembler or even in a higher-level language like Natural. The company API-
enabling these systems should ensure that any toolset under consideration supports the necessary
languages used for its applications. This support will almost certainly need to encompass tools to map
certain programming structures such as COBOL copybooks into standards-based formats, using
technologies like XML or JSON.

API middleware must be able to support various different types of applications such as CICS
COMMAREA and screen-based ones, IMS-based ones and even batch routines. For many years there has
been an active and well-developed aftermarket of vendors supplying a whole range of applications and
platforms for legacy systems, and support for the appropriate ones will be an essential requirement for any
user embarking on a project to API-enable them. The middleware may also need to access legacy data
and applications, which would require access to DB2, VSAM, Adabas and other data sources, preferably
under a single SQL-style interface.

Basic orchestration is a fundamental requirement for any API middleware. But this is an area where
enormous advantage can be gained by supporting value-added orchestration capabilities. Best-of-breed
API middleware needs to make the task of composing resources and processes as simple and error-free as

possible, covering application platforms like CICS and IMS, data sources such as DB2 and Page 13

VSAM and existing processes that may already be flowcharted with BPEL or some sort of Business Process
Management (BPM) solution. The more automation the API middleware can provide, the less demand will
be placed on the API developers and consumers, reducing risk.

All of the best-of-breed areas discussed so far lead to what is likely to be one of the most critical areas of
differentiation for legacy system API middleware – ease-of-use. It is quite possible for the API middleware
to satisfy the previous requirements but still leave a lot of work for the technical staff to perform. Tools need
to be intuitive, with minimal training requirements, and allow both legacy system and distributed
programmers to concentrate on composing services of the right level of granularity for use in both
environments without the need for expensive third-party services. It is well worth verifying these facts with
any prospective supplier before any acquisition is made.

There are a host of functions that belong to the generic API model discussion rather than the API
middleware itself. Examples are partner management services to manage third party API developer
partners, sandbox services for rapid development and specific device support. However, although the API
middleware does not necessarily need to provide these functions directly, it must offer API ecosystem
support. Security and management are key aspects of an API model, especially given the fact that APIs
may be being used by third party developers. Most API solutions offer some sort of key system to authorize
particular API development partners for what they can and cannot access, and it may be necessary for the
API middleware to enforce that level of authorization across the core systems services being utilized. There
will also be a need for material to provide API developers with the necessary information about the APIs
supported on core systems, in terms of what they do and what inputs and outputs they expect.

An essential part of any development process is testing, and this is another important best-of-breed area
for API middleware toolsets. This relates partly to the skills optimization issue, but also to the nature of APIs.
Testing will be very much easier if different components or services can be tested in isolation, rather than
having to wait for all the relevant components to be completed and assembled before any testing can occur.
A test harness that enables a legacy systems developer to test a particular composed operation or its
individual parts, creating inputs and outputs to simulate real operations, will be invaluable in terms of
reducing time-to-market for new projects and speeding up the overall development process.

Once the new services are developed and composed into APIs for external presentation, the core systems
API middleware toolset will need to provide governance and lifecycle support. This should allow the
creation of new APIs to be controlled and managed appropriately, fitting into corporate governance
procedures and then passing through development/test/QA/ production-levels to ensure that development,
deployment and production operations can be managed safely. Versioning should also be supported, to
allow for legacy system services to be updated in flight. Otherwise, there is an increased risk that an
unprepared or incorrectly leveled change might enter production, with potentially damaging consequences.
A critical issue for core systems users, where skills are at a premium, is to ensure that APIs can be modified,
enhanced and reused as quickly and easily as possible with minimum additional effort.

Finally, an important aspect of a best-of-breed toolset will be the core systems expertise of the tool
supplier. Although this is not actually a functional requirement, this point reflects the discussion about
system values and the need to be sensitive to the special requirements of working in a legacy environment.
In order for the toolset to be usable, effective and efficient, it will be vital that it is created based on an
extensive understanding of legacy systems. For example, these environments typically have stringent
requirements on integrity and recoverability. There are also many operating system functions that will be
useful, and in the end the ‘look and feel’ of the toolset will be important in order to gain acceptance within the
legacy systems community.

Page 14

Best of breed c haracteristic :
Development / Deployment

Additional c omments

Core systems service composition Developing orchestration flows
Building the right level of API granularity
Optimizing load and resource usage

Bottom-up and top-down service development Flexibility to choose the API
development approach

Support for web services / SOA For companies already invested in
these technologies

Minimal code generation Providing codeless ways to drive core
systems components

Automation facilities High degree of automation

Language support COBOL, PL/I, Natural, …

Support for additional resources CICS, IMS, 3270, Batch…
Other native packages and systems
Adabas, DB2, …

Added-value orchestration Spanning all resource types
Leveraging existing flowcharts and
processes

Ease-of-use Intuitive and efficient
Minimal training requirements

API Ecosystem support Security and management
Usage information
API invocation details (inputs, outputs
etc)

Testing tools Modelling / testing for individual
components

Governance and lifecycle support Creation, deployment, retirement

Core systems experience Vendor - provided experience and
skills

Figure 6: Best of breed characteristics – Development / deployment

Page 15

Operations
Once the core systems APIs have been created and tested, focus moves onto production operations. At this
stage, the wider API ecosystem becomes heavily involved with facilities, usually through some sort of API
Management tool. But it is important that best-of-breed legacy system API middleware still maintains a close
working relationship with the ecosystem. For example, the middleware needs to ensure that the ecosystem
has all the necessary information from the legacy perspective to function effectively, and there will be
specific areas where the ecosystem will almost certainly be somewhat blind. In particular, API models where
third party developers are involved often need to support API analytics of some sort, accurately
measuring and reporting API activity and usage. This is a key component in quality control, helping to
identify successful third part partners and allowing greater usage as confidence grows.

It is important that any core systems API middleware considers the question of administration, since all
assets need to be managed seamlessly to gain the most advantage from the API model. New APIs need to
be implemented, new users need to be authorized for allowed usage, and APIs being replaced may need to
be closed out, to mention just a few administrative tasks that need to be addressed. In addition, API
execution may span different locations as well as environments, even spreading as far as into partner and
other third party-companies. Therefore, the administration capabilities must include remote operations to
encompass end-to-end transaction needs. While some of these issues fall within the responsibilities of the
ecosystem, the API middleware needs to support such activities.

Of course, security is another issue that will be absolutely key to companies reliant on core systems.
Users are accustomed to a high level of security, and their operations are often mission-critical in nature.
These factors combine to create a high level of concern and potential risk when deploying a core systems-
based API, particularly because prized assets are now made available to the great wide world of tablets,
phones and the Internet of Things (IoT). Therefore it is crucial that security is managed carefully, linking up
with existing legacy systems security facilities in use such as RACF. Security in this sense may need to
address all four main areas of authentication, privacy (encryption), integrity and non-repudiation. Once
again, this will be primarily the responsibility of the full API ecosystem but API middleware toolset must play
its part. For example, the tools themselves must be secured from unauthorized usage.

The complexities of operating an API model, exacerbated by the use of asynchronous and event-driven
modes of operation, create a challenge in understanding what is actually happening in the live, production
environment. APIs may be executing and driving activities asynchronously, crossing platform and location
boundaries at will, and it can become extremely confusing to the operations staff. The result is that it can be
hard to maintain service levels and general responsiveness. The answer is for the API technology to offer
some level of monitoring and problem determination capability, and the API middleware has to play a
key part in this since it knows which activities are being driven by which APIs. These facilities need to be
able to glean information from within the core systems to be combined with additional information in order to
understand what is happening, and then provide the necessary investigation and action tools, such as
service tracing and data flow analysis, to identify and resolve any problems spotted by the monitoring
component. Ideally, this functionality should also provide some method for integrating with the
enterprise management framework, for example offering an SNMP agent to alert the framework of
problems within the wider legacy system environment.

Page 16

Best of breed characteristic: Operations Additional comments

API analytics support Gather usage statistics for individual APIs
Generate reports
Pass analytics information to API
ecosystem analytics tools

Administration support for the API ecosystem Handling all environments
Bring legacy systems APIs online and offline
User management liaison
Remote operations capability

Security Interoperation with API ecosystem
Authentication, integrity, privacy and
non-repudiation functions
Protection of API middleware assets

Monitoring and problem determination Information sharing with ecosystem
tools
Tracking of APIs and their internal flows

Integration with existing management framework Systems management
Alerts
Resource management

Figure 7: Best of breed characteristics – Operations

Flexibility
The final set of best-of-breed characteristics relates loosely to the flexibility of the toolset to support the core
systems APIs. For some companies, bi-directional support will be critical, allowing API components
controlled by the API middleware to drive other APIs that may reside on other systems. Efforts to gain more
value from legacy system investments by enabling them to support the API model frequently focus on
exposing resources for outside usage. This will certainly be the mindset of a company that is looking to
stabilize their core investment. However, many companies have accepted that their system of record
remains a key element of strategic planning for the future. These companies are likely to be very interested
in the additional benefits to be obtained by being able to interlink APIs – that is, for core applications to be
able to run external APIs as well as the other way around. This ensures that all IT investments are
leveraged, not just core investments. This bi-directional capability may require some additional work in the
toolset since a way must be provided for a core systems application to issue API requests.

Another aspect of flexibility relates to where the API middleware runtime processing is carried out. This
decision will usually be made based on specific service-level requirements or restrictions. Among other
things, the API middleware needs to deal with navigation issues for core applications, such as which CICS
program should be called depending on the result of the previous one, and formatting issues like dealing
with 3270 data streams when accessing screen-based applications. Depending on issues such as
performance requirements, capacity and ease of programming, it might be desirable to run all of the API
middleware functionality in its own legacy address space or within an existing legacy system environment
such as CICS or IMS. Alternatively, it might be desirable for some or all of these activities to take place
within a specialty engine, to reduce costs and improve performance and scalability, or even off prem
altogether, perhaps in a distributed server, appliance or the Cloud. Having said that though, it is highly likely
that orchestration should be restricted to core systems to avoid having to expose specific processes and
procedures to additional professionals. Whatever combination works best for the user, it is clear that a

Page 17

best-of-breed core system API middleware toolset will need to support this choice of processing location.

As just touched on, support for different processing locations and the previously discussed monitoring
support are important factors in another area of consideration for best-of-breed API middleware toolsets -
that is, scalability and performance. As well as these areas, the toolset will probably need to provide
some level of statistics reporting capability to allow effective capacity planning and load management and
to provide proper governance of third-party API developers. In addition, when running in a mode where
most of the API processing is carried out on core systems, the API middleware toolset should exploit
native legacy high-performance options such as specialty engines and cross-memory support to
optimize performance.

Best of breed characteristic: Flexibility Additional comments

Bi-directional support Access to external APIs
API access to core systems
API access across core systems

Choice of processing location Inside CICS
Outside CICS but on cor systems
Making use of specialty engines
Off prem, on distributed servers,
appliances or in the Cloud

Performance / Scalability Ability to choose processing location
based on performance/scalability needs
Statistics on services usage for capacity
planning purposes

Exploit native high-performance options Leverage legacy system - specific
optimization technologies

Figure 8: Best of breed characteristics – Flexibility

Summary
For many companies, core systems remain a key asset for the foreseeable future. As these companies
strive to deliver increased business value from their IT investments, opening up core systems becomes a
major focus. The API model and its related toolsets offer a way not only to extend the life of legacy systems,
but also to ensure that it continues to play a valued role in driving the business forwards. Breaking down the
barriers between the core systems and the rest of the IT world ensures that investments can be made
wherever they make the most sense, where the entire IT installation and its users may benefit.

But success or failure with legacy technology in the API world will be governed to a large extent by the
effectiveness of the tools to support API enablement combined with a disciplined focus on delivering the
right legacy-based APIs for the right solutions. Generic API middleware tools developed without considering
special core system needs will not do the job effectively. Instead, companies need to look for toolsets that
are specifically oriented to legacy systems, taking account of architectural, development, deployment and
operational needs.

All core systems companies will have their own specific requirements and hot buttons, and these will affect
the selection of the most appropriate tools. The best-of-breed characteristics presented in this paper are
intended to provide a checklist that companies can evaluate against their own requirements, and then
against the toolsets offered by the various suppliers. Some of these characteristics address purely functional

Page 18

needs, while others have implications for wider critical aspects of core systems API initiatives, such as
skills requirements, security and manageability. However, the goal remains to ensure that companies end
up with the API middleware best designed to ensure the success of their own legacy system API
initiatives.

Page 19

 Page 20

About Lustratus Research
Lustratus Research, founded in 2006, aims to deliver independent and unbiased analysis of global software
technology trends for senior IT and business unit management, shedding light on the latest developments
and best practices and interpreting them into business value and impact. Lustratus analysts include some of the
top thought leaders worldwide in infrastructure software.

Lustratus offers a unique structure of materials, consisting of three categories—Insights, Reports and Research.
Insights offer concise analysis and opinion, while Reports offer more comprehensive breadth and depth.
Research documents provide the results of practical investigations and experiences. Lustratus prides itself on
bringing the technical and business aspects of technology and best practices together, in order to clearly
address the business impacts. Each Lustratus document is graded based on its technical or business
orientation, as a guide to readers.

Terms and Conditions
© 2018—Lustratus Research

Customers who have purchased this report individually or as part of a general access agreement, can freely
copy and print this document for their internal use. Customers can also excerpt material from this document
provided that they label the document as Proprietary and Confidential and add the following notice in the
document: “Copyright © Lustratus Research. Used with the permission of the copyright holder”. Additional
reproduction of this publication in any form without prior written permission is forbidden. For information on
reproduction rights and allowed usage, email info@Lustratus.com.

While the information is based on best available resources, Lustratus Research disclaims all warranties as to the
accuracy, completeness or adequacy of such information. Lustratus Research shall have no liability for errors,
omissions or in adequacies in the information contained herein or for interpretations thereof. Opinions reflect
judgment at the time and are subject to change. All trademarks appearing in this report are trademarks of their
respective owners.

Steve Craggs trading as Lustratus Research
www.lustratus.com

Ref SC/LR/31675249V2.0

	Executive Summary
	Introduction
	The API Architecture
	What is an API?
	Implementing an API Architecture
	Why API-enable the Mainframe?
	API Middleware for mainframe users

	Mainframe Considerations
	Technology-related factors
	Learning the lessons from past mainframe integration projects

	Mainframe API Middleware
	Basic functions
	Best-of-Breed Characteristics
	Development / Deployment
	Operations
	Flexibility

	Summary
	About Lustratus Research
	Terms and Conditions

