@ coreTiGENT

Fabric vs. Custom Code: Simplifying Hybrid Integration

How IT teams are saying yes faster with Adaptive Integration Fabric.

I CHALLENGE CUSTOM SCRIPTS & CODE SAY YES FASTER with Adaptive Integration Fabric

Development Long timelines due to custom coding, — Drag-and-drop design studio reduces build time by up to
Time brittle logic, and coordination across 80%; deploys to production in days
teams
Reuse & Logic recreated project by project; — Reusable, version-controlled components standardize
Scalability prone to inconsistencies and high testing behavior and shorten test cycles
overhead
Skill Requires deep COBOL or PL/1 — Built for generalist developers; no-code environment
Requirements knowledge; limited to backend specialists eliminates need for low-level access
Integration Difficult to orchestrate inbound/ — Supports REST, SOAP, mainframe subroutines, external
Types outbound workflows across systems APIs, and hybrid flows from one interface
Error Handling Manual patching and post-deployment — Flexible input enforcement, runtime validation, and
fixes introduce risk and delay detailed logs enable proactive debugging
API Standards No automatic alignment with modern — Native OpenAPI support including operation IDs, input
API specs type mapping, and auto-exported specs
Change Fragile updates and complex change — Visual change tracking, comment annotations, and
Management requests slow response to business wizard-based project creation simplify updates
demands
Security & Scripts often lack centralized control — Centralized orchestration with configurable user roles
Governance or auditability and trace logging for oversight

www.adaptigent.com/fabric | info@adaptigent.com



